Advanced Algorithm

Jialin Zhang zhangjialin@ict.ac.cn
Institute of Computing Technology, Chinese Academy of Sciences

March 14th, 2019

Course Information

- Instructor: Jialin Zhang, zhangjialin at ict dot ac dot cn
- TA: Rui Zhang, zhangrui2016 at ict dot ac dot cn
- URL: http://z14120902.github.io/alg.html
- Office hours: Arrange by email
- Lecture: Thursday, 2:00; 4th floor, ICT
- Grades: Homework 40\%, Final Exam (closed-book) 40\%, Presentation 20\%

Course Contents

Randomized Algorithm complexity classes, inequalities, balls and bins (Inequalities), probabilistic method ...
Approxidmation Algorithm combinatory algorithm, LP-based approximation algorithm, hardness of approximation...
Quantum computing quantum algorithm, Grover's algorithm, Shor's algorithm. . .

Reference Book:

- Randomized Algorithm by R.Motwoni and P.Raghavan
- Approximation Algorithm by V.Vazirani
- Quantum Computation and Quantum Information by Michael A. Nielsen, Isaac L. Chuang

Lecture 1: Introduction of Randomized Algorithm

Outline

(1) Big O notation
(2) Quick Sort
(3) Min Cut

Big O notation

Big O notation
(1) $f(n)=O(g(n)): \leq$
(2) $f(n)=o(g(n)):<$
(3) $f(n)=\Omega(g(n)): \geq$
(3) $f(n)=\omega(g(n)):>$
(6) $f(n)=\Theta(g(n)):=$

Big O notation

Big O notation
(1) $f(n)=O(g(n)): \exists$ constant $c, \overline{\lim }_{n \rightarrow \infty} \frac{f(n)}{g(n)} \leq c$
(2) $f(n)=o(g(n)): \overline{\lim }_{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$
(3) $f(n)=\Omega(g(n)): g(n)=O(f(n))$
(9) $f(n)=\omega(g(n)): g(n)=o(f(n))$
(0) $f(n)=\Theta(g(n)): f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$

Sorting Problem

Ref: Randomized Algorithm - Chapter 1, Thm 1.1.
Sorting Problem: Given a set S of n numbers, sort them into ascending order.

- First trial
(1) Find median y of set S; (cn)
(2) Partition $S \backslash\{y\}$ into two sets S_{1} and S_{2}; (n)
(3) Recursively sort S_{1} and S_{2}.
(9) Time complexity: $T(n) \leq 2 T(n / 2)+(c+1) n$.
(3) But: median is complicated to find.
- Second trial
(1) Find y such that two sets S_{1} and S_{2} are approximately same size;
(2) For example $T(n) \leq T(n / 4)+T(3 n / 4)+(c+1) n$.

Quick Sort

Ref: Randomized Algorithm - Chapter 1, Thm 1.1.
Sorting Problem: Given a set S of n numbers, sort them into ascending order.

- Quick Sort
(1) Find random y of set S; $(O(1))$
(2) Partition $S \backslash\{y\}$ into two sets S_{1} and $S_{2} ;(n)$
(3) Recursively sort S_{1} and S_{2}.
(1) Time complexity: ???
- $O(n \log n)$ does not depend on input. It holds for every input.

Min Cut

- Ref: Randomized Algorithm - Chapter 1.1,10.2.
- Min-Cut problem: Given a graph $G=(V, E)$ which is a connected, un-directed multi-graph, find a cut with minimum cardinality.
- standard method: using max flow algorithm
- Ford-Fulkerson algorithm: $O\left(\left|E \| f^{*}\right|\right)$;
- Edmonds-Karp algorithm: $O\left(|E|^{2}|V|\right)$;
- Dinic algorithm: $O\left(|E||V|^{2}\right)$;
- Push-relabel algorithm: $O\left(|E \| V|^{2}\right)$;
- etc...

A Randomized Algorithm for Min-Cut Problem

Contrast Algorithm:
(1) Pick an edge uniformly at random;
(2) Merge the endpoints of this edge;
(3) Remove self-loops;
(9) Repeat steps 1-3 until there are only two vertices remain.
(5) The remaining edges form a candidate cut.

Min Cut

- What is the successful probability?
- $\Omega\left(\frac{1}{n^{2}}\right)$
- Repeat the contrast algorithm $\Theta\left(n^{2}\right)$ times, successful probability : constant
- Time complexity?
- Time complexity is $O\left(n^{2}\right)$.
- How to uniformly randomly pick an edge?

Homework

(1) In QuickSort algorithm, based on the recursion, prove the expected running time is $O(n \log n)$.
(2) Randomized Algorithm - Exercise 1.2, Page 9.

